AbstractSeveral decades have passed since the anterograde corticomotoneuronal hypothesis for amyotrophic lateral sclerosis (ALS) was proposed. The intervening years have witnessed its emergent support based on anatomical, pathological, physiological, neuroimaging, and molecular biological studies. The evolution of an extensive corticomotoneuronal system appears restricted to the human species, with ALS representing a uniquely human disease. While some, very select non-human primates have limited corticomotoneuronal projections, these tend to be absent in all otheranimals. From a general perspective, the early clinical features of ALS may be considered to reflect failure of the corticomotoneuronal system. The characteristic loss of skilled motor dexterity involving the limbs, and speech impairment through progressive bulbar dysfunction specifically involve those motor units having the strongest corticomotoneuronal projections. A similar explanation likely underlies the unique “split phenotypes” that have now been well characterized in ALS. Large Betz cells and other pyramidal corticomotoneuronal projecting neurons, with their extensive dendritic arborization, are particularly vulnerable to the elements of the ALS exposome such as aging, environmental stress and lifestyle changes. Progressive failure of the proteosome impairs nucleocytoplasmic shuffling and induces toxic but soluble TDP 43 to aggregate in corticomotoneurons. Betz cell failure is further accentuated through dysfunction of its profuse dendritic arborizations. Clarification of system specific genomes and neural networks will likely promote the initiation of precision medicine approaches directed to support the key structure that underlies the neurological manifestations of ALS, the corticomotoneuronal system.
2621 Superior Drive NW Rochester, MN
P 507.288.0100
F 507.288.1225
aanem@aanem.org